segunda-feira, 2 de setembro de 2019

Teoria da Relatividade - Para entender de uma vez

Einstein – Para entender de uma vez


Novo livro da SUPER, escrito por Salvador Nogueira, explica a obra do gênio de cabo a rabo, como você nunca viu. Saiba o que você vai encontrar lá dentro


É uma daquelas histórias que passa de livro em livro, de biografia em biografia, e, embora ninguém saiba ao certo quanto há de verdade nela, é tão boa que ao menos merecia ser verdadeira. Então vamos lá novamente. Em 1931, Charlie Chaplin convida Albert Einstein para a estreia de seu mais recente filme, Luzes da Cidade. Em Hollywood, conforme as duas estrelas – uma da arte e outra da ciência – caminham juntas, são reconhecidas por uma multidão, que passa a aplaudi-las fervorosamente. “Eles nos aplaudem”, disse Chaplin a seu convidado de honra, “eu porque todo mundo me entende e você porque ninguém o entende”.
Diversas versões desse episódio – algumas mais engraçadas – circulam por aí desde a primeira vez em que ele foi mencionado, numa autobiografia publicada em 1947 por János Plesch, médico e amigo de Einstein por mais de duas décadas. E, sendo ou não verdadeiro, o caso exprime um fato real bastante conhecido: a imensa maioria das pessoas acha as ideias do físico alemão tão geniais quanto impenetráveis, o que as faz desistir de entendê-las antes mesmo de tentar.
Nem podemos dizer que se trata de um temor infundado. Se alguém chega para você e diz, de sopetão, que o tempo e o espaço são flexíveis, matéria e energia são a mesma coisa, e eventos que são simultâneos para uma pessoa não serão simultâneos para outra, a reação mais comum é jogar tudo para o alto e correr em desespero, diante de um mundo que claramente não é mais o que costumava ser. Natural. Foi exatamente desse modo, por sinal, que boa parte dos físicos reagiu no início do século 20, quando Einstein começou a dizer essas coisas todas. Tudo parecia tão maluco que a Academia Real de Ciências da Suécia nem teve coragem de premiá-lo com o Nobel pela teoria da relatividade – de onde nasceram todas essas ideias –, e sim por algo mais trivial, e menos sujeito a controvérsias: sua explicação de um fenômeno conhecido como efeito fotoelétrico, em que a incidência de luz sobre uma placa metálica leva ao surgimento de uma corrente elétrica. (Não subestime o tamanho dessa realização, contudo: ela foi o primeiro grande trabalho baseado na física quântica, que produziria uma revolução tão grande quanto a relatividade – senão maior).
Fico feliz, portanto, de encontrá-lo aqui, lendo estas linhas. Isso mostra que você é uma das pessoas que acham que vale a pena entender o que Einstein nos revelou sobre o Universo. E eis o primeiro grande segredo para que tudo fique claro: a grande barreira à compreensão é que tentamos justamente começar pelas conclusões da teoria, e não pelas premissas. E aí, além de ficar bem mais difícil de entender, perdemos um dos mais encantadores aspectos da mente de Einstein: seu apreço incondicional por ideias belas e simples.
Pense no paradoxo dos gêmeos, a ideia de que um dos irmãos viajando pelo espaço em altíssima velocidade envelhece muito mais devagar do que o outro que ficou na Terra. Cabe lembrar que, para chegar à conclusão de que isso de fato acontece, Einstein precisou apenas de duas premissas básicas, ambas de uma simplicidade ímpar. A primeira soa como um truísmo, uma verdade em si mesma: as leis da física produzem resultados iguais para quaisquer observadores em condições equiparáveis de movimento, ou seja, sem aceleração relativa entre si.
Dá para acreditar nisso sem grandes questionamentos, não? A segunda é menos óbvia, mas nem por isso menos elementar: a luz no vácuo, para qualquer observador, ou seja, em qualquer referencial, viaja sempre à mesma velocidade, independentemente de onde parte ou aonde chega. Enfim, ela é invariante. Se você correr com seu carro atrás de uma Ferrari, não vai alcançá-la. Mas vai observar o carrinho vermelho se afastando de você a uma velocidade menor. Com a luz isso não acontece. Pegue uma Ferrari, ou um jato, ou a nave espacial mais veloz que um dia será construída. Não acontece nada. O raio de luz continua se afastando com a mesma velocidade aparente, como se “fugisse” de você. Em outras palavras, a velocidade relativa de uma Ferrari varia. Se ela estiver a 250 km/h e você, a 100 km/h, essa velocidade relativa entre vocês será de 150 km/h. Se você acelerar mais um pouco, diminui para 100 km/h. Com a luz não. A velocidade dela é de 1,08 bilhão de km/h . Acelere a 1 bilhão de km/h, e o que acontece? A luz continua se afastando de você a exatamente 1,08 bilhão de km/h. Igual quando você está parado. Em outras palavras, a velocidade da luz é absoluta. Não varia nunca. (Não por acaso, Einstein, de início, chamou sua criação de “teoria da invariância”, antes de adotar o termo “relatividade”.)
Pronto: com base nessas duas premissas, e mais nada, Einstein destrói o espaço e o tempo fixos e imutáveis concebidos por Isaac Newton e reformula nosso modo de enxergar a realidade. Como? Calma, estamos apenas na introdução. Vamos chegar lá.
O principal objetivo deste livro, por sinal, é mostrar que não há nada que impeça você de chegar às mesmas conclusões a que o grande físico alemão chegou, e então aceitá-las como naturais. Em essência, quero provar que ninguém precisa ser um Einstein para compreender as ideias de Einstein.
Por outro lado – e isso também é uma mensagem importante –, foi preciso haver um Einstein para dar à luz todas essas descobertas fascinantes.
Albert nasceu em Ulm, então parte do Império Alemão, em 14 de março de 1879, filho de Hermann Einstein com Pauline Koch. Aos 17 anos, para evitar o serviço militar, ele renunciou à cidadania alemã e foi admitido na Politécnica Federal Suíça em Zurique. Lá ele conheceria Mileva Marić, a única mulher dentre os estudantes de matemática e física. O romance entre os dois logo floresceu e Mileva teria influência importante em suas futuras ideias científicas.

Einstein formou-se em 1900, mas passou dois anos procurando trabalho, até finalmente conseguir uma vaga no escritório de patentes de Berna, como examinador-assistente. Trabalhando lá, em meio à papelada, encontrou tempo para desenvolver algumas de suas ideias mais geniais. Einstein rotineiramente usava o que ele chamou de gedankenexperimenten – “experimentos mentais”, em alemão. Eram testes que na realidade não teriam como ser executados, mas podiam acontecer dentro da mente, se o imaginador tivesse um sentido de abstração suficientemente aguçado.
Em 1905, com apenas 26 anos, Einstein teria seu grande surto criativo, com uma série de artigos científicos que confirmariam a existência dos átomos (nosso assunto do capítulo 1), explicariam o efeito fotoelétrico com base em uma descrição quântica da luz (iniciando assim uma revolução científica de primeira grandeza, da qual falaremos no capítulo 2), formulariam a teoria da relatividade restrita (redefinindo espaço e tempo, como veremos no capítulo 3) e descreveriam a equação mais famosa da ciência: E=mc2 (em que energia e matéria se tornam faces da mesma moeda, como veremos no capítulo 4).
Tão incríveis e frenéticas foram essas realizações que 1905 ficou conhecido como o annus mirabilis – ano miraculoso – da física. Havia, contudo, muito mais a ser feito. O físico alemão sabia que a sua primeira versão da relatividade estava incompleta e precisava ser ainda desenvolvida, de modo a ser generalizada para todas as circunstâncias possíveis. Albert passou boa parte da década seguinte buscando essa resposta.
Em 1909, Einstein se tornou professor da Universidade de Zurique e, em 1914, retornou à Alemanha, onde se tornaria diretor do Instituto Kaiser Wilhelm para Física e professor da Universidade Humboldt de Berlim. Foi lá que o físico concluiu a teoria da relatividade geral – sua obra-prima científica. Publicada em 1916, é ela que permite a Einstein suplantar Isaac Newton, ao criar uma nova e mais sofisticada teoria da gravitação – assunto que abordaremos no capítulo 5.
Em seguida, no capítulo 6, exploraremos algumas das consequências tecnológicas das ideias de Einstein – e elas vão mais longe do que se costuma pensar.
Daí em diante libertaremos todo o poder exploratório da relatividade, que nos permite compreender a origem e a evolução do Universo (capítulo 7), seu potencial destino (capítulo 8), a bizarra natureza dos buracos negros (capítulo 9), os fenômenos das lentes gravitacionais (capítulo 10) e o fato de que o próprio tecido do espaço-tempo pode ser chacoalhado pela gravidade, nas agora famosas e recentemente confirmadas ondas gravitacionais (capítulo 11).
Também é verdade que os escritores de ficção científica devem tanto a Einstein quanto os próprios físicos, pois a relatividade geral permite, ao menos em teoria, coisas realmente incríveis, a começar por viagens no tempo (capítulo 13).
Mais adiante, explicamos os aspectos mais surpreendentes da mecânica quântica explorados por Einstein, como a previsão de que haveria um novo estado da matéria a temperaturas muito baixas, o condensado de Bose-Einstein (capítulo 14), e a de que partículas poderiam de alguma forma se comunicar instantaneamente a distância, no fenômeno conhecido como emaranhamento (capítulo 15) – algo que parecia loucura completa até ser demonstrado experimentalmente. E hoje é graças a isso que pesquisadores no mundo inteiro realizam testes de teletransporte quântico.

Por fim, terminamos, no capítulo 16, onde Einstein também parou, com uma busca incessante de três décadas por uma teoria capaz de costurar a relatividade e a mecânica quântica. A maior parte desse esforço se deu nos Estados Unidos, onde Einstein se exilou em 1933, depois que Adolf Hitler chegou ao poder na Alemanha. O físico tornou-se pesquisador do Instituto de Estudos Avançados da Universidade de Princeton, onde permaneceria até sua morte, em 18 de abril de 1955. E até hoje os físicos seguem se debatendo para tentar realizar o sonho dele e construir essa “teoria final”, que potencialmente explicaria de forma segura o que levou ao surgimento do Universo e o que existe no interior dos buracos negros.

Teoria da Relatividade - O que é

O que é a Teoria da Relatividade?

Espaço e tempo, na verdade, são faces da mesma moeda. E o jeito que o tempo passa para você pode ser diferente do jeito que ele passa para mim.

É a ideia mais brilhante de todos os tempos – e certamente também uma das menos compreendidas.
Em 1905, o genial físico alemão Albert Einstein afirmou que tempo e espaço são relativos e estão profundamente entrelaçados. Parece complicado? Bem, a ideia é sofisticada, mas, ao contrário do que se pensa, a relatividade não é nenhum bicho-de-sete-cabeças.
A principal sacada é enxergar o tempo como uma espécie de caminho que a gente é obrigado a trilhar. Mesmo que agora você esteja parado lendo isso, você ainda está se movendo no tempo. Afinal, os segundos estão passando, como um trem que corre para o futuro em um ritmo constante.
Até aí, nenhuma novidade bombástica. O que Einstein constatou de surreal é que esse “trem do tempo” pode ser acelerado ou freado – passar mais rápido para uns e mais devagar para outros. E que, para fazer o tempo andar mais devagar, basta se movimentar.
Se você estiver andando, por exemplo, as horas vão ser mais vagarosas para você do que para alguém que esteja parado. Mas, como as velocidades que vivenciamos no dia a dia são muito pequenas, a diferença na passagem do tempo é ínfima.
O efeito é perceptível quando a gente chuta o balde: se você passasse um ano dentro de uma espaçonave que se desloca a 1,07 bilhão de km/h e depois retornasse para a Terra, as pessoas que ficaram por aqui estariam dez anos mais velhas que você!
Como elas estavam praticamente paradas em relação ao movimento da nave, o tempo passou dez vezes mais rápido para elas – mas isso do seu ponto de vista. Para os outros terráqueos, foi você quem teve a experiência de sentir o tempo passar mais devagar.
Dessa forma, o tempo deixa de ser um valor universal e passa a ser relativo ao ponto de vista de cada um – daí vem o nome “relatividade”. Ainda de acordo com os estudos de Einstein, o tempo vai passando cada vez mais devagar até que se atinja a velocidade da luz, de 1,08 bilhão de km/h, o valor máximo possível no Universo.
A essa velocidade, ocorre o mais espantoso: o tempo simplesmente deixa de passar! É como se a velocidade do espaço (aquela do velocímetro da nave) retirasse tudo o que fosse possível da velocidade do tempo. No outro extremo, para quem está parado, a velocidade está toda concentrada na dimensão do tempo.
“Einstein postulou isso baseado em experiências de outros físicos e trabalhou com as maravilhosas conseqüências desse fato”, diz o físico Brian Greene, da Universidade Columbia, nos Estados Unidos, autor do livro O Universo Elegante, um best seller que explica em linguagem simples as ideias do físico alemão.
Mas as descobertas da Relatividade não param por aí. Ainda em 1905, Einstein concluiu que matéria e energia estavam tão entrelaçadas quanto espaço e tempo. Daí surgiu a célebre equação E = mc2 (energia = massa x a velocidade da luz ao quadrado), que revela que uma migalha de matéria pode gerar uma quantidade absurda de energia.
Uma descoberta genial
Einstein mostrou que espaço, tempo, massa e gravidade estão intimamente ligados
1 – Segundo Einstein, tudo no Universo se move a uma velocidade distribuída entre as dimensões de tempo e espaço. Para um corpo parado, o tempo corre com velocidade máxima. Mas quando o corpo começa a se movimentar e ganha velocidade na dimensão do espaço, a velocidade do tempo diminui para ele, passando mais devagar. A 180 km/h, 30 segundos passam em 29,99999999999952 segundos. A 1,08 bilhão de km/h (a velocidade da luz), o tempo simplesmente não passa.
2 – Uma consequência dessa alteração da velocidade do tempo é a contração no comprimento dos corpos. Segundo a Teoria da Relatividade Especial – a primeira parte da teoria de Einstein, elaborada em 1905 –, quanto mais veloz alguma coisa está, mais curta ela fica. Por exemplo: quem visse um carro se mover a 98% da velocidade da luz o enxergaria 80% mais curto do que se o observasse parado.
3 – Na chamada Teoria Geral da Relatividade (a segunda parte do estudo, publicada em 1916), Einstein usou a constatação anterior para redefinir a gravidade. Ele passou a entendê-la como a distorção que um corpo causa no tecido do espaço-tempo. A força que prende as pessoas ao chão é a curvatura criada pela Terra no espaço ao seu redor. Por tabela, corpos com muita atração gravitacional também fazem o tempo passar muito devagar.
5 – Uma aplicação prática da Relatividade é a calibragem dos satélites do GPS, que orientam aviões e navios. Pela Relatividade Especial, sabe-se que a velocidade de 14 mil km/h dos satélites faz seus relógios internos atrasarem 7 milionésimos de segundo por dia em relação aos relógios da Terra. Mas, segundo a Relatividade Geral, eles sentem menos a gravidade (pois estão a 20 mil km de altitude) e adiantam 45 milionésimos de segundo por dia. Somando as duas variáveis, dá um adiantamento de 38 milionésimos por dia, que precisa ser acertado no relógio do satélite. Portanto, se não fosse pela teoria de Einstein, o sistema acumularia um erro de localização de cerca de 10 quilômetros por dia.

Obtido de: https://super.abril.com.br/mundo-estranho/o-que-e-a-teoria-da-relatividade-2/

Teoria da Relatividade - o que é gravidade?


Entenda de uma vez: o que é a gravidade?

Descrita como uma curvatura no próprio tecido do espaço-tempo, essa força molda a evolução do Universo. E, graças a Einstein, agora entendemos como ela faz isso.



Quando Einstein apresentou suas primeiras descobertas sobre o espaço e o tempo, em 1905, o mundo da física virou de pernas para o ar. Nem todos concordavam com ele, mas o tema virou rapidamente o favorito de toda a comunidade acadêmica, exceto por uma pessoa: o próprio Einstein.
Isso porque, apesar das revelações de que espaço e tempo eram relativos, o físico sabia que sua teoria estava incompleta. Suas equações só descreviam um caso específico, em que objetos estivessem em movimento uniforme. Ou seja, eles podiam estar a qualquer velocidade, contanto que ela fosse constante. Era uma versão restrita da relatividade, incapaz de descrever o que acontecia ao espaço e ao tempo quando objetos estavam acelerando, ou desacelerando.
Einstein ficou obcecado com esse problema e passou dez anos trabalhando nele. Como generalizar a Teoria da Relatividade para todas as circunstâncias? E aí ele atirou no que viu e acertou no que não viu. Einstein percebeu que uma teoria assim necessariamente teria de ser também uma teoria da gravidade.
Quer ver? Sigamos o alemão em mais um de seus famosos experimentos mentais. Para este aqui, teremos de nos imaginar no elevador de um edifício. Imagine-se dentro dele quando os cabos se rompem e ele despenca. Na queda, parecerá que flutuamos dentro do elevador, caindo ao mesmo ritmo que ele na direção do solo. Poupemos o sofrimento de pensar no que acontece ao fim da queda, e em vez disso imaginemos outro arranjo, em que o elevador está largado no meio do espaço, longe de tudo. Sem a gravidade por lá, também flutuaremos. Ou seja, é como estar em queda livre.
Sigamos agora esse experimento imaginando que, ao nosso elevador espacial, um foguete tenha sido preso aos cabos, puxando-nos para cima. Em razão da inércia (a “vontade” de o corpo permanecer no estado em que estava antes), seremos puxados para o chão do elevador. Curiosamente, ser puxado para cima faz seu peso se projetar para baixo da mesma maneira que faria se você estivesse no elevador em repouso, sob a gravidade da Terra. Ou seja, acelerar é como estar em repouso num campo gravitacional.
Einstein chamou isso tudo de Princípio da Equivalência. Ele diz basicamente que aceleração e gravidade são iguais, e que a mesma matemática capaz de descrever um processo necessariamente descreverá o outro. E aí ele passou uma década procurando as equações apropriadas. Quando as encontrou, em 1915, a Teoria da Relatividade Geral deu sentido pleno aos fenômenos sugeridos pela versão restrita.
 (Cristina Kashima/Superinteressante)
O universo é ditado pelo que há nele: a massa diz ao espaço-tempo como se curvar, e o espaço-tempo diz à massa como se mover

O ESPAÇO-TEMPO

Einstein descobriu que é possível, matematicamente, tratar o tempo como apenas mais uma dimensão, juntando-o às três dimensões espaciais (largura, comprimento e altura) num espaço-tempo em 4D. E que a presença de objetos com massa curva esse espaço-tempo. Quanto mais massa, maior a curvatura, maior a distorção do tempo e do espaço. No Sol, o tempo flui mais devagar do que na Terra, com sua massa bem menor.
Com isso, o alemão reformou o entendimento da gravidade formulado por Isaac Newton no século 17. Em vez de ser uma misteriosa força a distância, ela passou a ser entendida, de forma mais elegante, como a influência que a curvatura do espaço-tempo produz sobre objetos que estejam nele. O americano John Wheeler foi quem melhor descreveu: “a massa diz ao espaço-tempo como se curvar, e o espaço-tempo diz à massa como se mover”. Ou seja, em vez de ser aquela coisa newtoniana de uma massa atraindo outra massa, é uma massa curvando o espaço-tempo e fazendo a outra massa mudar seu caminho por ele.
A primeira confirmação da relatividade geral veio com a observação de um eclipse solar em Sobral, no Ceará, em 1919, onde se mediu o quanto a presença do Sol curvava os raios de luz das estrelas distantes. Desde então, toneladas de experimentos confirmaram a teoria, culminando com a detecção das ondas gravitacionais – marolas no tecido do espaço-tempo – em 2015.
O mais notável da teoria de Einstein, contudo, é que ela permitiu pela primeira vez investigar de forma concreta como o próprio Universo teria nascido.


Obtido de: https://super.abril.com.br/ciencia/entenda-de-uma-vez-o-que-e-a-gravidade/?fbclid=IwAR2oNi3a0QvYqcNsQRY8nLQFZ13O00CKKDVEhwGzQHo534gvKxUj_W0zPG8